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We study generalized Jacobi weight functions in terms of their (generalized)
degree. We obtain sharp lower and upper bounds for the corresponding Christoffe:
functions, and for the distance of the consecutive zeros of the corresponding
orthogonal polynomials. The novelty of our results is that our constants depend
only on the degree of the weight function but not on the weight itself. '.f, 1992

Academlc Press, Inc.

1. INTRODUCTION AND NOTATION

The sets of all real-valued algebraic polynomials and trigonometric
polynomials of degree at most n will be denoted by fIn and H,,, respec­
tively. The function

k

w(z)=/wl n /Z-ZXI,
j~ 1

(1.1 )

will be called a generalized Jacobi weight function of degree

k

N= L rj

j=I

(1.2)

with positive exponents. The set of all generalized Jacobi weight functions
of degree at most N with positive exponents will be denoted by IGeAPI N'

This notation comes from the fact that the function w defined by (1.1) is
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the modulus of a generalized complex algebraic polynomial of degree N
defined by (1.2). In the trigonometric case, the function

w(z)= Iwl .TI Isin z~zjlrj,
J=1

OJ ,6 0, Zj E C, Z E C, Ij> 0, (1.3)

(1.4 )

will be called a generalized trigonometric Jacobi weight function of degree

1 k

N=- L r·2 }
j~1

with positive exponents. The set of all generalized trigonometric Jacobi
weight functions of degree at most N with positive exponents will be
denoted by IGCTPI N. The function w defined by (1.3) is the modulus of a
generalized complex trigonometric polynomial of degree N defined by (1.4)
which explains our notation.

Let rx be a nonnegative, finite Borel measure in [- 1, 1]. Given
0< p < co, we define the Christoffel function An(rx) for n = 1, 2, ..., by

. fl IQ(tW
An(rx,p,z)= mm IQ( )Ipdrx(t),

QEJl,,_1 -I Z
ZE C, (1.5 )

and the generalized Christoffel function A:(a) for real n ~ 1 by

. fl jP(t)
A:(a, p, z) = mf f-) da(t),

fEIGCAPI"_l -1 P(z
Z E iC. (1.6)

For M> 0, we also introduce the functions

AM(x) = max{M- I J1-x2, M- 2},

and

WM(x) = f w(t) dt,
It-xl ~L1m(X)

-1 ~x~ 1,

-1 ~x~ 1,

(1.7)

(1.8 )

where we assume that w(t) is defined if It - xl ~ A ,lAx).
For g(~O)ELl(O,2n), the Szego function D(g) is defined by

(
1 f27< 1+ze-;())

D(g,z)=exp 4n 0 logg(l1) 1_ze-mdl1 , Izi < 1. (1.9)

The boundary value D(g, e it ) can be defined as the non-tangential limit of
D( g, z); this exists for amost every real t. It is important to note that
D(g)EH2(!zl~1), and \D(g,eitW=!g(t)! holds for almost every real t.
Other properties of the Szego function may be found in, e.g., [6, Chap. V].
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In Sections 2 and 3, we give sharp lower and upper bounds for Christoffel
functions and for generalized Christoffel functions in [- 1, I J corre·
sponding to generalized Jacobi weight functions. These results are proved
in Sections 6 and 7. In Section 4, we give sharp lower and upper bounds for
the distance of consecutive zeros of orthogonal polynomials corresponding
to generalized Jacobi weight functions with positive exponents. These
results are proved in Section 8. The properties of generalized Jacobi weight
functions with positive exponents were the subject of study in a series of
recent papers [1-5]. A number of these results which are used in this paper
are summarized in Section 5.

The novelty of the results in the present paper is that the constants
depend only on the degree of the weight function but not on the weight
itself. For fixed generalized Jacobi weights, all our principal results have
already been known (see [9, Theorem 6.3.28, p. 120, and Theorem 9.22,
p. 166J for the results corresponding to Theorems 2.1, 2.2, 3.1, and 4. L
whereas the "fixed" version of Theorem 3.2 was essentially proved in [7.
formula (13), p. 150J).

2. UPPER BOUNDS FOR A.,,(o:, p, x) FOR -1 ~ x ~ 1

THEOREM 2.1. Given 0< p < ,/J, °~ r < eIJ, and n = 1, 2, ..., let
M = 1+ p(n -1)/(r + p + 1). Then there exists an absolute constant C 1 > 0
such that

-1 ~x~ 1,

for every measure 0: such that do: = w dt with aWE IGCAP/ r·

THEOREM 2.2. Let 0< p < 00, 0 ~ r < ex:, and n = 1, 2, .... Ler
IV = W(T)/WIBl, where IV(T) and W IB ) belong to IGCAPI T' and let dx = w dt.
Let d denote the number of different zeros of W(B). Then there exists an
absolute constant C2 > 0 such that

-1 ~x~ 1,

with

p(n-l-d)-T",'If =0-.- _

2T+4+ p

whenever AI ~ 1, and

-l~x~l,
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with

whenever M> O.

ERDELYI AND NEVAI

M = p:-(:.-n_-_1.:.....)-_r
2r+4

3. LOWER BOUNDS FOR A:(a, p, x) FOR -1 ~ x ~ 1

Since A,~(a, P)~An(a, p), we will give lower bounds for A:(a, p) instead
of AAa, p). Our first theorem deals with the case da( t) = w( t) dt, where
WE IGCAPI r, and the second one gives a lower bound in a more general
case, when the weight function w satisfies the Szego condition of
logarithmic integrability.

THEOREM 3.1. Given 0 < p < 00, 0 ~ r < 00, and 1~ n < 00, let
M = 1+ p(n - 1)/(r + p + 1). Then there exists an absolute constant C3 > 0
such that

-1 ~x~ 1,

for every measure a such that da = w dt with IV E jGCAPI r'

THEOREM 3.2. Let w be a nonnegative, integrable weight function in
[-l,lJ such that log(w(cos'))ELI(-n,n). Let O<p<oo, and let
da = w dt. Then there exists an absolute constant C4 > 0 such that

A:(a, p, x) ~ C4 L1 p(n-I) + I(X) ID(w(cos '), re ilJ
) I2, -1 ~x~ 1,

where r=(p(n-1)+1)/(p(n-l)+3), x=cos8, and D(g) is the Szego
function defined by (1.9).

4. ZEROS OF ORTHOGONAL POLYNOMIALS CORRESPONDING TO
GENERALIZED JACOBI WEIGHTS WITH POSITIVE EXPONENTS

We will use the standard notations. Let a be a nonnegative, finite Borel
measure with supp(a)c [-1, 1J, and let {Pn(a)}:~o denote the corre­
sponding orthonormal polynomials. In addition, {Xj.n(a)}i~1 denote the
zeros of pAa) in decreasing order, X O.n = 1, X n + I,ll = -1, and xj,lI = cos OJ,1I

for j = 1, 2, ..., n. The main goal of this paper is to establish sharp lower
and upper bounds for the distance of consecutive zeros of orthogonal poly­
nomials associated with generalized Jacobi weight functions with positive
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exponents. The novelty of these estimates lies in the fact that our constants
depend only on the degree of the weight function.

THEOREM 4.1. Let 0~ r < OC! and let d'Y. = li' dt, where It' E IGCAPI To

Then there exist two absolute constants C5 > 0 and C6 > 0 such that the zeros
of the corresponding orthogonal polynomials satisfy

and

for n= 1,2, ....

Cf+l
OJ'n- OJ'-ln ~ --,

o 0 n

cr+ 1

OJ' ,,- OJ'-l" ~ --,, , n

j = 1, 2, ..., n + 1,

j=2, 3, ..., n,

(4.1 )

(4.2)

We believe that (4.2) actually holds for j= 1 andj=n+ 1 as well, but,
alas, our method does not seem to work in these cases. The latter would
generalize [8, Theorem 3, p. 367; 9, Theorem 9.22, p. 166].

5. AUXILIARY RESULTS

The extremal properties of generalized Jacobi weight functions with
positive exponents were studied in a number of recent papers. In this
section we list those theorems which will be used to prove our new results
in Sections 2-4. We will use a pointwise Remez-type inequality for which
we introduce the class

iGCAPIN(S) = {IE /GCAPIN: m( {XE [ -1, 1J: f(x) ~ I}) ~ 2 -s},

0<s<2,

where m(A) denotes the Lebesgue measure of a measurable set A c IR. The
following theorem was proved in [1, Theorem 4].

THEOREM 5.1. There exists an absolute constant C7 > 0 such that, given
o~ N < 00 and 0 < s ~ 1, the inequality

f(x)~exp (c7 Nmin {p' J;}),

holds for every f E IGCAPIN (s).

-1 ~x~ 1,
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We will need Nikol'skii-type inequalities for the classes IGCAPI Nand
IGCTPIN as well (see Section 1 for the notations). For O;;;;,N<oo and
fE\GCAPIN or for n=O, 1,2, ..., andfElIn , let

O<p< 00,

whereas for 0;;;;, N < 00 and f E \GCTPI N or for n = 0, 1,2, ..., and f E H n ,

let

IIflloo= _~~x""lf(O)1 and Ilfllp=(J:"lf(OWdOYIP, O<p<oo.

The following two inequalities were proved in [5, Theorems 5 and 6].

THEOREM 5.2. Given 0;;;;, N < 00, there exists an absolute constant Cg > 0
such that

O<q<p;;;;'oo,

holds for every f E \GCAP\ N' For instance, cg = e2(2n) -I is a suitable choice.

THEOREM 5.3. Given 0;;;;, N < 00, there exists an absolute constant Cg > 0
such that

0< q <p;;;;, 00,

-1 ;;;;,X;;;;, 1,

holds for every fE IGCTPI N' For instance, Cg = e(4n) -I is a suitable choice.

If fEIGCAPIN, where O;;;;,N<oo, then g(O)=lf(cosB)sinBIE
\GCTP\ N + I' and, thus, applying Theorem 5.3 to the function g with q = 1
and p = 00, we obtain

N+2 II
f(x);;;;, 2Cg j1"=7 -I f(t) dt,

for every fE IGCAPIN' This, together with Theorem 5.2, gives

THEOREM 5.4. Given 0;;;;, N < 00, there exists an absolute constant CIO > 0
such that

-1 ;;;;'x;;;;' 1,

holds for every fE IGCAPIN' For instance, clO=e2(2n)--1 is a suitable
choice.
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Using a linear transformation, we easily deduce from Theorem 5.2 that

-1 ~x~ 1,

holds for every WE jGCAPln where W M is defined by (1.8).
To prove (4.2) in Theorem 4.1, we will need weighted Markov and

Bernstein type inequalities. The following results are particular cases of [4,
Theorems 1 and 3].

THEOREM 5.5. Given n = 0, 1, ... , and 0 ~ r < 00, there exists an absolute
constant c11 > 0 such that

holds for every algebraic polynomial QE Iln and weight II' E IGCAPI r.

THEOREM 5.6. Given n=O, 1, ..., and o~r< C/J, there exists an absolute
constant c11> 0 such that

,,11 - x2 IQ'(x) w(x)1 ~cdr+ l)(n +n !IQwllx;, -1 <x< 1,

holds for every QE Iln and IV E IGCAPI r.

With the notation of (1.7), and combining Theorems 5.5 and 5.6, we
obtain the inequality

-1 ~x~ 1, (5.2)

for every QE Iln and WE IGCAPlr, where n = 1, 2, ..., 0~ r < oc, and
c13 > 0 is an absolute constant.

We think that the factor (r + 1) in Theorems 5.6 can perhaps be
dropped.

6. PROOF OF THEOREMS 2.1 AND 2.2

To prove Theorem 2.1 we need the following

LEMMA 6.1. Given a> 0, bE IR, and 0 ~ r < 00, the inequality

w(J)~2ra-rly-blr max w(t),
b--as;,t~b+a

holds for every Ii' E IGCAPI r'

YEIR\(b-a,b+a),
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Proof of Lemma 6.1. Without loss of generality we may assume that
a = 1 and b = 0; the general case follows from this case by a linear sub­
stitution. Let Tm denote the Chebyshev polynomial of degree m, and
let -1 < x I,m < x2,m < ... < xm,m < 1 denote the zeros of Tm' where
xj,m= -xm-j,m for j= 1, 2, ..., m. Given m= 1, 2, ..., a well-known
inequality of Bernstein yields

for every Q E lIm. Now let

k

w(z) = \wl n \Z-zXjE \GCAPlr·
j=1

YEIR\(-1,1),

(6.1 )

(6.2)

If each exponent rj is a positive rational number, say, rj = qjq for
j= 1, 2, ..., k, with some positive integers qj and q, then applying (6.1) to
the polynomial

k

Q(z) = w 2q n (z - z)qj(z - Zj)qj E 1I2qF>

j=1

and taking the 2qth root of its modulus, we obtain the inequality in the
lemma. The case of positive real exponents r j in (6.2) can be reduced to
that of rational exponents by approximation. I

Proof of Theorem 2.1. Let v denote the Chebyshev weight, that is,
v(x) = (lIn)(l- x 2 ) -1/2, and let

sin«m+l)9)
Tm(x) = cos(m8) and Um(x)= . () ,-1~x~1,x=cos8,

. SIn

be the Chebyshev polynomials of first and second kinds, respectively. We
define the corresponding reproducing kernel function Km ( v) by

It is easy to see that

m

Km(v, x, t) = 1 + 2 L Tj(x) Tj(t).
j= 1

K ( .)_ 2m+ 1+ U2m(x)
m V, x, X - 2 '

(6.3 )
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and, thus, by a straightforward calculation,

119

where c l4 > 0 is an absolute constant. Therefore,

I
Km(v, X, 1)1 2m+l 2
----~ ~-,
Km(v, X, x) c l4(m+l) C l4

In addition, we also have l

-1 ~x~ 1,

-1 ~x, I~ 1.

(6A)

(6.5 )

{
11- x2 + )2 - t

2
}

IKn.(v, x, 1)1 ~ ClS min m, 1+ 'v ., ,
IX- II ~

-1 ~x, t~ 1, m= 1, 2, ..., (6.6)

with an absolute constant clS>O. To show (6.6), we may assume without
loss of generality that 0 ~ x ~ 1, that is, x = cos y with 0 ~}' ~ n12. By the
ChristoffeJ-Darboux formula,

First, by (6.3),

(6.7)

IKm(v, x, 1)1 ~ 2m + 1, (6.8 )

Second, if I = cos ewith 0 ~ e~ 2n13, then

ITm(x) Tm-1(t)- Tm(t) Tm_l(x)\

= ITn! -l(t)(Tm(x) - Tm_l(X)) - Tm- l(.x)(Tm(t) - Tm_ ttt))!

~ Icos(my)-cos«(m-l)y)j + Icos(me)-cos«m-l)O)1

~ 2lsin( (2m - 1)yI2) sin(yI2)1 + 2lsin( (2m - 1)e(2) sin( (12)1

I sin y I I sin e I r;--z --2
~ Icos(y/2) + cos(eI2) ~ 2('.1 1 - x +)1- t ).

Thus, inequality (6.6) follows from (6.8) and (6.9).
Now, given 0 < p < 00, 0 ~ r < 00, and n = 1, 2, ..., Jet 2

(6.9)

and l-n - 11m= --.
s

(6.10)

1 See [9, Lemma 6.3.8, p. 108] where the constant 1 was accidentally left out.
o Here [.] denotes the integer part.
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Given XE [-1, 1J, define the polynomial Q=QxEIl"_l by

(6.11 )

If m = 0, then p(n-1) ~ 2r+4 and Q(t) == 1, so we can obtain the
inequality in Theorem 2.1 immediately as an application of (5.1) and
Lemma 6.1. More specifically,

-1 ~x~ 1,

where C16 > 0 is an absolute constant.
Thus, in what follows, we may assume m ~ 1. We may also assume

without loss of generality that 0 ~ x ~ 1. For the sake of brevity, we
introduce the intervals

-1~x~1.

It follows from (6.5), (6.10), and (6.11) that the inequality

f jQ(tW w(t) dt ~ d~+4+ PLlm(x) max w(t) (6.12)
Im(x)r.[-l.l] tElm(x)

holds with an absolute constant C n > O. By Lemma 6.1,

[
2It-XIJTw(t) ~ max w(y),
Llm(x) YElm(x)

for every WE jGCAPlr.

(6.13 )
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Using (6.11), (6.10), (6.6), (6.4), and elementary estimates, it can be
shown that the inequalities

tE [2x-l, IJ\/",(x), (6.14 )

tE [-0.5, 2x-lJ\/",(x), X;:;: 0,5,

(6.15 )

and

X, tE [-1,1], [t-xl ;:;:0.5, (6.16)

hold with some absolute constant c l8 > 0, and we can assume that c18;:;: 4,
For instance, to prove (6.14), we notice that sp>T+2, and

1+ ()1- x 2 +)1 - t 2
) Ix - tl- l on the right-hand side of (6.6) can

be estimated by 5Jl-x2Ix-tl-l for (E[2x-l,I]\/m tx), whereas
for (6.15), we use l-x::::;l-t and 0::::;x-t::::;1-t::::;2(x-t) for
tE [-0.5, 2x-l] and x;:;:0.5.

Using (6.13) and (6.14) we obtain

f IQ(t)IPw(t)dt
• [2x-1, l]'Jmlx)

~ 2rc2r+4+p(~)r,12 (x)
-...;: 18 A () mm LJ m X

x max w( y)fit - xl- 2 dt
yE Im(x) [2x --l.l]'Jm lx}

::::;cU-+S+PLlm(x) max w(y).
yElm(x)

In addition, by (6.13), (6.15), and by 0::::; x - t::::; 1- t,

f < ' IQ(t)jP w(t) dt
[ -0.~.2x-l]\lm(x)

::::;d[+4+ Pm -4 max w(y)! (l-t2)-2dt
yElmlx) [-0.5,2x- 1]\lmlx)

(6.17 )

::::;d[+5+ Pm -4 Ll;;;I(X) max w(Y)::::;d[+5+ p Am(x) max w(y)
YElm(x) yElm(.li:)

(6.18 )



122 ERDELVI AND NEVAI

for 0.5:::;x:::; 1. Finally, from (6.13) and (6.16) we obtain

J \ _ \Q(tW w(t) dt
[-1,1] ,[x-0."x+0.5]

:::;4Tdf+4+Pm-4(m2 Llm(X))-T max w(y)
yE lm(x)

:::;df+ 4 +p Llm(x) max w(y)
YElm(x)

(6.19)

by a generous estimate, where we used the fact that Ix-tl:::;2 in (6.13).
Since QEIln _ 1 and Q(x)= 1, the extremal property (1.5) and the
inequalities (6.12) and (6.17)-(6.19) yield

1

Iln(Cl,P,x):::;j \Q(tWw(t)dt:::;ef9+P+1Llm(x) max w(y) (6.20)
-1 YElm(x)

with an absolute constant e19~4. By (6.10),

p(n - 1) p(n - 1)
--=--'-------'- :::; m :::; .
2r+4+ p 2r+4

(6.21 )

Therefore, Lemma 6.1, inequalities (6.21), the facts that m ~ 1 and
M = 1+ p(n -l)j(r + p + 1), and inequality (5.1) imply

Llm(x) max w(y):::; d~+ p+ 1 Ll M(X) max w(y):::; crt P+ l wM(X)
yElm(x) yEIM(X)

with some appropriately chosen absolute constants C20 >°and e21 > 0,
which together with (6.20) yields Theorem 2.1. I

Proof of Theorem 2.2. We will prove the appropriate upper bound for
An only; the corresponding estimate for A: is analogous, and it requires
only minor modifications of the following proof. Let

d

W(B)(Z) = Iw\ n Iz - zXj E IGCAP\ T'
j~ 1

Z;#Zj if i#j. (6.22)

qj=[;] + 1,

s=[2r
p
+4J+ 1,

k r+pd
q= L qj:::;--,

j=l p

[
n-1- qJm= ~1,

s

(6.23)

(6.24)

d

P(·)=lcol n (,-zj)qJEIlq,
j~ I

3 Here [. ] denotes the integer part.

(6.25)
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where

d

1\(')=10]1 TI (,-zj)qJEllq,
j~l

-l~x~l, (6.26)

Let

if IZj-xl~!L1m(x)

if IZj-xl<~Llm(x).
(6.27)

Obviously,

(
Km(V, x, . ))S _

Q(.)= K (, ) PA')Elln_I'
m [, X, X

(6.28 )

(6.29 )

Introducing the sets

J I = [x - L1 m (x), x + L1 m (x)] n [ - 1, 1] and J2 =[-1,1J\11'
(6.30)

replacing w by W=IPxIPwEIGCAPlr+Pd in the proof of Theorem 2.1,
and using (6.22)-(6.30) and (5.1), we obtain

f IQ(t)1 Pwet) dt = f IKm(v, x, t) !SP IPAt)! Pw(t) dt
h h Km(v, x, x)

~4r+pd f jKm(V, x, t) !SP jP(t)!P w(t)dt
-J2 Km(v, x, x)

~4r+pdCb+pd+p+lf IP(t)IP wet) dt (6.31)
It-xl ~Lfm(x)

with an absolute constant Cn > 0 chosen in such a way that
C[9+ pd + P+ lc~(r + pd + 1f ~ Cf2+ pd + p+ I. Here we used that IPAt)1 ~
4r + pd IP(t)! for every tEJ2 which follows from (6.22)-(6.27). Observe that
(6.22)-(6.27) and (6.30) imply IP(t)IP~2r+pdIPx(x)IP for every tEll_
This, together with (6.31), yields

f IQ(t)IPI1·(t)dt~8r+pdcf/pd+p+IIPxCxW f w(t)dt
J, 1/- xl <;; Llm(x)

::::;Cf3+ Pd +P+ I IPAx)IP r w(t)dt (6.32)
)I,-xi <;Llm(x)

with an absolute constant C23 > O. In addition, (6.22)-(6.27) and (6.30)
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imply IPAt)IP~3r+PdIPAx)IP for every tEll' so that by (6.28), (6.23),
(6.24), and (6.5)

f \Q(t)\ Pw(t) dt ~ df+ 4 +Pj' \Px(tW w(t) dt
~ ~

~df+4+p3r+pdIPAx)IPf w(t)dt
Jl

~ cf/ pd +p+ l\PAx)1 pf w(t) dt, (6.33)
J[

where C24 > 0 and C25 > 0 are absolute constants. Therefore, the extremal
property (1.5) and formulas (6.32), (6.33), (6.30), (6.28), (6.23), and (6.24)
yield

1

An «()(, p, x)~ \PAx)\-P L
I

IQUW W(t) dt~cf/pd+p+IWm(X)

~ Cf6+ pd+ P+ IWM(X),

where C26 >0 is an absolute constant and M = (p(n-1-d)-r)/(2T+4+p),
and, hence, the theorem has completely been proved. I

7. PROOF OF THEOREMS 3.1 AND 3.2

Proof of Theorem 3.1. Let x E [ -1, 1] be fixed, N = T + p(n - 1), and
M = 1+ p(n -1 )/(T + P + 1), and let4

I M,~(X) = [x -I] L1 M(x), x + I] L1 M(x)], 0 < I] ~ 1.

Let the weight WE \GCAPlr be of the form
k

w(z) = Iwl n jz-zXJ,
j= I

k

WioO,ZjEC,ZEC,rj>O, L rj~r. (7.1)
j=l

In what follows, AM(x) denotes the open disk in the complex plane
centered at x with radius 0.125 . L1 M (x). Define Zj and lV by

_ {Zj, if ZjE C\AM(x) (7.2)
Zj = x - 0.125. sgn(x) L1 M(X), if Zj E AM(x),

and
k

w(·)=lw\ n \,-zXJEIGCAP\r,
j=1

4 See formula (1.7) for the definition of LlA((x).

(7.3 )
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respectively. In what follows, we assume that QE IGCAPln_I' Observe
that QE IGCAPln_1 and I~'E IGCAPlr imply IQIP1\.'E /GCAPIN with
N = r + p(n -1), and, therefore, using Theorem 5.1 with 0 < s =

L1 M(X) < 1, where M = 1 + p(n -l)/(r + p + 1), we obtain

m( {t E [ - 1, 1]: IQ(t)IP IV( t);:?: exp( - c7(r+ p + 1)) IQ(x)1 P 11!(X)} )

Hence, there is a set

Ec [-1, 1J\[x-0.25 ·L1 M(x), x+O.25 ,,-iM(X)] (7.4)

such that

and

IQU)IP INt);:?: exp( -C7(r + p + 1) IQ(x)IP ii>(x),

Observe that (7.1), (7.2), (7.3), and (7.4) yield

l\.'(x);:?:(2/3)r max w(t)
lElm,O,0625(X)

and

tEE. (7.6)

(7.7)

tEE. (7.8)

From inequalities (7.5), (7.6), and (7.7) we obtain

2 exp(c 7(r + p + 1) f IQ(t)IP lV(t) dt
LlM(x) E

;:?: /Q(x)1 P \~'(x);:?: IQ(x)IP(2/3 ( max w(t).
IE I m.00625(X}

We can use this estimate combined with (7.8) and Lemma 6.1 to obtain the
existence of an absolute constant Cn > 0 such that

r 1

I IQ(t)IP w(t) dt
"' -I

;:?: t IQ(t)IP w(t) dt;:?: 3 --rLIQ(t)IP \~,(t) dt

;:?: 3 -T exp( - c7(r+ 1» 2 -I LI M(x)(2/3 )TIQ(x)/ P max w(t)
tEIM,0062j(xl

;:?:cf/P+1LlM(x)!Q(x)I P max W(t);:?:Cf7+ P+1IQ(x)IPwM(x).
II-xl,,;,1.,(x)

(7.9)

640.'69 2-2
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Izi = 1,

Since (7.9) holds for every QE \GCAPln __ l> Theorem 3.1 has completely
been proved in view of the extremal property (1.6) of the generalized
Christoffel function A*. I

Proof of Theorem 3.2. In what follows we will assume that 0 < p < 00

and XE [-1,1]. We start with the inequality

(7.10)
pn

r=--
pn+2'

which holds for every g E H 2
( Izi ~ 1) and for every complex algebraic

polynomial Pn of degree at most n = 1, 2, ... (cf. [7, Theorem 6, p.148J).
A simple calculation shows that for every real trigonometric polynomial
R n of degree at most n there is an algebraic polynomial P 2n E II2n such
that R~(e)= jP 2n(eili)j2. Therefore, (7.10) yields

l' E IR,
pn

r=--
pn+2'

(7.11 )

holds for every real trigonometric polynomial Rn and for every
gEH2(1z1 ~ 1). First, we extend (7.11) to every fE IGCTPIN, writing Nin
place of n. To this end, first assume f can be written as

k I z-z_,rj

f(z) = Iwl })1 sin~ ,
k

W =I 0, Zj E C, Z E C, L rj ~ 2N,
j=l

with some rational exponents rj > o. If rj = q)q with some positive integers
qj and q for 1~j ~ k, then, applying (7.11) with p/(2q) instead of p to the
trigonometric polynomial R n of degree at most 2qN, where

k ( z-z- Z-Z-)qj
Rn(z)=lwI2qEIl sin~sin~ ,

we obtain

l' E IR,
pN

r=--
pN+2'

(7.12)
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p(n-1)+1
r=:.....:...----'--

p(n-l)+3'

for every f E IGCTP/ N and for every g E H 2
( Izi ::( 1). Now let 1::( n < 00,

0< p < 00, and let Q E IGCAPI,,_l. Applying (7.12) with f, where fUi) =

IQ(cosO)llsinOll/PEIGCTPI,,_l+liP' and choosing g=D(w(COS·))E
H 2(lzl::( 1), we obtain

IQ(cos )')1 p Isin }')I ID( w(cos 0), reii'W

(2+ p(n-1))eJ" . .
::( 4n· _"IQ,,(cosO)IPlsmOIID(w(cos.),e,eWde,

(7.13)

for every QEIGCAP/,,_l. Since ID(IV(COS·), ei8W= w(cos 0) for almost
every real 0, we can use the change of variables t = cos 0 and x = cos}' to
obtain from (7.13) the inequality

IQ(x)IP )1-x2

. (2+ p(n-1»2ej,1
::( ID( w(cos· ), re1e )/-2 IQ(t)1 Pw(t) dt,

4n --1

p(n-1)+1
r='------

p(n-l)+3'

for every QE IGCAPI,,_l. To finish the proof, we refer to our Schur-type
inequality [5, Theorem 7] which states that given 0 < N < (fJ and
0< p < 00,

max IQ(t)1 P::( e(l + pN) max (./1- t2 IQ(t)1 P)
-1~{~1 -l~t~l

for every QE IGCAPI N. Now Theorem 3.2 follows from the last two
inequalities, and from the definition of LlM(x) in (1.7). I

8. PROOF OF THEOREM 4.1

Proof of Theorem 4.1. Given n = 1, 2, ... and 0::( r < 00, let
M=1+2(n-1)/(r+3). First we prove (4.1). It is sufficient to prove the
existence of a positive constant C28 such that

since (8.1) implies (4.1) by a straightforward calculation (cf. (1.7)). Assume
that there is an integer m such that 1 ::( m ::( n + 1 and

(8.2)
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since, otherwise, we already have the desired upper bound for this
particular value of m. We introduce the Christoffel numbers

m = 0,1, ..., n + 1. (8.3 )

By the Markov-Stieltjes inequality [6, formula (5.4), p. 29J we have

rm

-

1

•

n

w(t) dt ~ Am -l,n +Am.n,
Xm.n

Since WEI GCAP I" Theorem 2.1 yields

m = 1, 2, ..., n + 1. (8.4)

A ~c'+\v (x )=C'+3J w(t)dtm,n 1 M m,n 1
It-xm,nl ~ LtU(xm,n)

~Cf+3L1'~I(Xm,n) max w(t),
It- x m,,,\ ~ LfM(Xm.,,)

m =0, 1, ..., n + 1. (8.5)

Observe that assumption (8.2) and Lemma 6.1 imply

max w(t) ~ 6F max w(t),
[t --""m,nl ~LfM(Xm.n) .'Cm,n':::;; t ~ Xm-1.n

and

max w(t) ~ 6' max w(t),
It -xm-l,lIl:S::; LlM(Xm -l,lI) xm,,,:S:; t ~ Xm-Ln

m = 1, 2, ..., n + 1, (8.6)

m=1,2, ...,n+1. (8.7)

Now inequalities (8.4)-(8.7) and Theorem 5.2 yield

(Xm -l,1l - X m,ll) max w(t)
X:m.n:S:;t~Xm-L,ll

~ 2d(r + 1)2 rm-1,n w(t) dt ~ 2d(r + 1)2(Am_l.n+ Am,n)
Xm,n

~ 2d(r + 1)2 cf + 36'(LI M(Xm-l,n) + LI M(X"" n)) max w(t),
Xm,n~r~Xm-l,n

for m = 1, 2, ..., n + 1, and, thus, (8.1) follows. Hence, (4.1) has been proved.
The proof of (4.2) is somewhat more complicated; it is based on a method

of Erdos and Tunin (cf. [6, pp. 111-112; 8, p. 369; 9, pp. 164-165J). Given
n = 1, 2, ..., and 0::::; r < 00, let M = 1 + 2(n -1 )/(r + 3), and let

IM,~(x) = [x -1] LI M(X), X+ 1] LI M(X)J, 0<1]::::;1.



GENERALIZED JACOBI WEIGHTS 129

Let {lm,,,}~, = 1 denote the fundamental polynomials of Lagrange interpola­
tion defined by

and

where tij,m is the Kronecker-delta symbol. The identity

1 = ±lJ;,,{!l,
.~,,(iY.,2,t) j=1 Aj ,,,

(8.9)

where lj,,, is given by (8.3), is well known (cf. [6, formula (4.7), p.25]),
From (8.9), Theorems 2.1 and 3.1, Lemma 6.1, and (5.1) we obtain

12 (t) = l~,.,,(t) A ~ ~ l].,,(t) A = Am."
m." ), 111," L), m," J ( 2 tl

~m.n j= 1 ~j,n An 0:, , ,

(8.10)

with some appropriate absolute constants C 29 > 0 and C30 > O. Let A,,(x)
denote the open disk centered at x with radius 0.5· L1,,(x). Given

we define

k

w( . ) = Il I· - zp,
j~ 1

k

I r;~r,
j=1

(8,11 )

and

if ZjE C\A ll (xm . ll )

if zjEAn(x"",,),
(8.12 )

We will estimate

k

!t'(- ) = Il I· - =X'·
i= 1

(8.13 )

To this end we introduce the sets

and (8.14 )
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It follows from (8.10)
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Observe that (8.11)-(8.14) imply \1:,(t):S;3 r w(t) for tEl2 and w(t):S;3r~v(t)

for t E IM.o.25(xm.n)' Therefore, by the Gauss-Jacobi quadrature formula
(cf. [6, formula (3.9), p.23]), Theorem 2.1 and Lemma 6.1 yield

:S;3rcf+3dM(Xmn)·8T.3T max ~:V(t).
, It - xm.nl <::; 0.25·.d M(Xm•n)

Summarizing (8.15) and (8.16), we get

(8.16 )

with an appropriate absolute constant C31 > O. When proving (4.2), we can
assume without loss of generality that xm,n:S; O. We may also assume that
X m -I,n:S; 0.25; otherwise, there is nothing to prove. Now Theorem 5.4,
(8.17), and the inequalities xm,n:S;O and x m_ l ,n:S;0.25 imply

Ixl :S; IXm,nl +0.5· (1 -Ixm,nl), (8.18)
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with appropriate absolute constants C32> 0 and C33 > O. Assume that

131

(8.19 )

since, otherwise, we already have the desired lower bound for this
particular value of m. In view of (8.11 H 8.13) and (8.19), we have

(8.20)

and

(8.21 )

Finally, using (8.8), the Mean Value Theorem, inequality (5.2) trans­
formed linearly to the interval

[ - y, y] == [ -ixm,nl- 0.5· (1-lxm,,,I), IXm,nl + 0.5· (1 -Ixm,,,i )],

the assumptions xm,,,~O and xm_l,n~0.25, and inequalities (8.18), (8.20),
and (8.21), we can find a point ~ E (xm .", xm _ 1,,,) such that

!1:·(Xm.n)= 11~.,,(.X"m_l,n) -1~,,,,(xm.n)1 ~v(xm.lI)

= (xm- 1,,, -xm,,,)I(/;'.,,)'(~)It'(X"",,) I

~ (xm_ l.n - xm,n)( 1.5 )T/ (/;',II)'(~) It·( ~)I

~ (X",-I,n - x",.n) C34(r+ 1fy -1L1; 1(~lv) max . It-{X)
Ixi .;; IXm,nl + 0.5· (1 -Ix,",nl)

with appropriate absolute constants C34 > 0, C35 > 0, and C36 > 0, and this,
together with (1.7), gives the lower bound in (4.2). Thus, the theorem has
completely been proved. I
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